Hydrometeorological
Prediction Center

Hydrometeorological Testbed
concept,

Obijective is to improve the quality
and use of precipitation forecasts



Possible ways to achieve this
objective

Provide a conduit between research and operations

— Increase interaction between HPC forecasters, NWP modelers,
users and the research community.

— Start visiting scientist program
Gather information from users

— How are gpf products used and what are the best ways to use
them.

Make sure forecasters are aware of research that may
be applicable to the QPF problem.

Provide new tools to forecasters
— And training to forecasters



Recent and current HMT
research/efforts

Normalized anomaly research
Reforecast Project analog PQPF

Training manual of topics pertaining to
forecasting heavy precipitation

MCVs and decaying tropical storms
— Which ones will be the big rainfall makers



The use of normalized anomalies
to identify heavy rainfall events.

« we started in northern California

« tried to answer three questions.

— Were there differences in the anomaly patterns for
3 different rainfall groupings

— ldentify which anomaly fields would be most
useful

— Can normalized anomalies patterns be used to
identify potential extreme rainfall events.

— How common are these high anomaly field days.



Sierra Nevada precipitation
study.

 Binned 163 precipitation days into 3
grouping (heavy, moderate and light)
based on the maximum rainfall analyzed in
the Sierra Nevada mountains on the HPC
analyses between 37.5°N and 41°N.

« used 30-year NCEP reanalysis data to
develop composite mean and anomaly
fields for various parameters



A few definitions

* normalized departure of any
meteorological variable can be defined by

N=(X-u)/o

X is the value of the variable (ie. geopotential height,
PW, moisture flux)

W is the mean of that variable (based on a 21-day runnning
mean)

o Is the standard deviation at the point (based on a 21-day
running mean)
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Normalized anomalies

 Chebyshev's Theorem

— At least 88.7% of cases lie between 3 sigma.
— At least 93.7% lie between 4 sigma
— At least 96% lie between 5 sigma

* Empirical rule (for normal distribution)

— 95% will fall within 2 sigma

— 99.7 will fall within 3 sigma

— 99.994 will fall within 4 sigma

— 99.99994 will fall within 5 sigma

— 99.9999998 will fall within 6 sigma



Histogram showing the percentage of the total

distribution for normalized anomalies of PW (solid line)

and magnitude of the 850-hPa MF (dotted line).
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Annual cycle of the mean magnitude of the MF
(interval=0.03ms-1) and the mean magnitude of the MF associated
with normalized anomalies of 2.5, 3, 4, 5 standard deviations at
37.5°N 125°W.
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Composite mean PW for groupings
T+24
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A look at three muli-day extreme
rainfall events.

* Look at similarities at in the magnitude
scale and position of the 700-hPA
anomalies.

* The strong atmospheric rivers and
associated normalized anomalies of 850-
hPA moisture flux

* And how the position of the precipitation
maxima seem to be related to the position
of the atmospheric rivers.



12Z09JAN1995 700hPa Height (contour,dm) and
Normalized Anomaly (shaded, stddev)
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12Z09MAR1995 700hPa Height (contour,dm) and
Normalized Anomaly (shaded, stddev)
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Mar. 9-10, 1985 (right) multi-day heavy rain event
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1200 UTC 9 Jan 1995

1200 UTC 9 Mar 1995

Neormalized Anorlﬂoly (shaded, stddevj
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Precipitation during 3 days of the two multi-day events during 1995

127 9 Jan 127 9 Mar 1200 UTC 10 1200 UTC 11

12Z 10 Jan  12Z 11 Jan Mar 1995 Mar 1995
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1200 UTC 31 Dec 1996
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HPC 24-hour precipitation analysis valid at,

1200 UTC 31 Dec 1200 UTC 1 Jan 1200 UTC 2 Jan
1996 1997 1997

Note through 1200 UTC 1 Jan 1997, most of the precipitation was
north of SFO. The axis of strongest MF reaches SFO at 1200 UTC 1
Jan.
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Note as the axis of strongest moisture flux shifts
south of SFO, the rainfall maximum also shifts
south.




Correlations between the normalized anomalies of various
parameters and the maximum analyzed precipitation

contour

Parameter R-square (P1) R-square (P2)
850-hPa MF 52 A0
700-hPa MF 88 47
700-hPa component of MF perpendicular to a1 40
the Sierra Range

850-hPa component of MF perpendicular to 54 43
the Sierra Range

Py 48 40
700-hPa u-component 25 22
700-hPa w-component 15 24
850-hPa u-component 07 28
g850-hPa v-component 32 .28




Why perpendicular r square is not
higher.

OOZ30DEC1995 700hPa Moisture Flux Magnitude (tcontour. [ka/kg][m/s]),
Mormalized Anomaly (shaded, stddev),
and Moisture Flux Vector
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5
6 inches of rain occurred during the 24 hr period. The flow was
almost parallel to the orientation of the Sierra range. Therefore
component perpendicular to the mountains was low. There were
3 similar heavy rainfall cases.



12-hr GFS forecast of 500-hPa 12-hr GFS forecast mslp and 100-500-

geopotential height and vorticity valid hPa thickness (dashed) valid 1200 UTC 6
1200 UTC 6 Nov. 2006 Nov. 2006

Composite mean 500-hPa height
(solid) and sea level pressure
7|(dahsed , every 4 hPa) at the

"| beginning of the period of heavy
| | precipitation over the Pacific
Northwest.

Note similarities between the
forecast 500-hPa and MSL

patterns and the composite. Using
anomalies one tool to use to help
diagnose the possibility of a
significant precipitation event.

-130




Note the similarities between the Pac Northwest heavy
rainfall composite mean 500-hPa pattern to the pattern
found by Junker et al. Both show a negative/positive

couplet.

From Lackmann and Gyakum 1999
Pacific Nortlwest composite Northern California conmosite

g:’,?::ma:sfg; }::;;:,hepm < are Composite mean S00-hPa normalized
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population from climatology.



12-hr GFS forecast of PW and 850-hPA winds valid 1200 UTC 24-hr GFS forecast of PW and 850-hPA winds valid 0000 UTC 7 Nov.
6 Nov. 2006 2006

The PWs are high but how high compared to normal? What about
the winds? Moisture flux?
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anomalies during the event. Normalized anomalies in red
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The SREF ensemble mean
was predicting an extended
period with the normalized MF
anomalies greater than 5
sigmal!

An ensemble mean was
signaling a rare event




12- 36 hr Model QPFs are shown below (on a 32-km grid) .

N Y
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The GFS and NAM are predicting Paciic Northwest everage snusl precpitation
heavy rainfall but not a extremely '

rare event,

10-km PRISM climatology for

November. Blue areas are

mountainous areas with BBee EEnw ERuss
B sas N oo12s [ 255 3%

enhanced precipitation. Elne s o
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Legend (om)

Figure 2 Annual mean precpitation for the Pacific Northwaest.
Figure courtasy of Oragon Climate Service (Oragon State
University ).



Analog PQPF products
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12-36 hr QPF from the HPC
forecaster. Depi 32-km grid.
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Reforecast product PQPF for
4.00 inches during the 24-hr
period ending at 1200 UTC 7 Nov.
2006.
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The Hamill et al. guidance
products suggested that the
mountains near the WA and OR
coasts would get more than
forecast by the models or by HPC.
Their guidance suggests amounts
24-h analog ensemble QPF-90thpercentile gt “A” gnd “B” should be at least as

(upper decile) (in) product valid 1200 UTC 7 o~ .
Nov. 2006. heavy as at “C” and D
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Will it work other places”? Maddox Synoptic
type flood, most likely in Spring and fall.
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GFS THU 061026/1200V012 500 MB HEIGHT AND ABS VORTICITY

12hr GFS 500-hPa heights
and vorticity valid 1200 UTC
26 Oct 2006.

27hr GFS 250 heights and
isotachs valid 0300 UTC 27
Oct 2006.

GFS FRI 061027/0000V024 500 MB HEIGHT AND ABS VORTICITY

27hr GFS 500-hPa heights
and vorticity valid 0300 UTC
27 Oct 2006.

24 hr GFS 850-hPa wind and PW
forecast valid at 0000 UCT 27 Oct.
2006.



15-hr SREF ensemble mean forecast of PW 27-hr SREF ensemble mean forecast of PW (brown

(brown, inches) and standardized anomaly of line, in inches) and standardized anomaly of PW
PW (dashed red) valid 1200 UTC 26 Oct. 2006. (dashed red) valid 0000 UTC 27 Oct. 2006.
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Moisture transport is forecast to be greater than 4 standard deviations from
the norm........ a relatively rare event.



No ensemble member predlcted 47

12-36 hr GFS QPF valid 1200 UTC 12-36 hr NAM QPF valid 1200
27 Oct. 2006. UTC 27 Oct. 2006.

24 hr 3 inch spaghettl dlagrams Valld 1200 UTC 17 Oct. 2006

SREF members, eta members are GEFS members, only initial
red/yellow, rsm members are blue/purple conditions are perturbed.
and wrf members are green.

Which model is more correct? Where is the biggest heavy rainfall threat?
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What do these two fields suggest about where the first convection will
start and do they say suggest anything about propagation and
precipitation efficiency.



24 hr observed accumulated
precipitation

> :
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The bulk of the ensembles were
too far north with their heavy
rainfall axis. This is a common
error, especially of the GEFS and
it’s babies. Also for K/F scheme
members.

L
24 hr 3 inch spaghetti diagrams valid 1200 UTC 17 Oct. 2006

vy i \ - "

SREF members, eta members
are red/yellow, rsm members are GEFS members, only initial
blue/purple and wrf members conditions are perturbed.
are green.
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Reforecast PQPF

Started working with Hamill and Whitaker in 2005

* Feb 2007-teleconference held with Hamill, Whitaker and
Grumm to investigating whether using moisture flux
would improve the analog PQPF.

— Discussion included attempts to improve the forecasts and
underprediction of the heavier thresholds.

— H & W found that including moisture flux did not help forecasts,

— Logistic regression did slightly improve PQPF for highest
thresholds.



http://www.hpc.ncep.noaa.gov/research/mcs_web_test test.htm
Table of contents

1) Convection and Mesoscale Convective Systems
A) Scale Characteristics of MCSs
B) On the evolution, shape and cell movement of
MCSs
<) Propagation and movement

iy The original vector method

i) The revised vector method

—

iii) An example of a backbuilding MCS

——

iv) Whenis a forward propagating MCS likely

D) How long will an MCS last before dissipation
E) Exercise I. Forecasting convective movement
F) Exercise 2. Forecasting convective movement

Multiple pages and links



T.S. Elena (1985), Erin and the
Union MO flash flood.

o Similarities
— A strong low-level jet
— Weak mid to upper-level shear

— A mid level PV maximum
— High relative humidity

A conditionally unstable air mass
* A Moist absolutely unstable layer?

— Max convection during night near the
circulation center.

Are dynamics similar to those described by
Raymond and Jiang (1990) and Trier et al. (2000)?



~ Similar satellite imagery signatures

0415 UTC 4 Sept. 1985 0415 UTC 5 Sept. 1985

0545 UTC 7 may 2000 1015 UTC 4 Sept. 1985 1015 UTC 5 Sept. 1985




GOES IR imagery v.t. 00 UTC 19 GOES IR imagery v.t. 03 UTC 19
August 2007

4 LA ) ¥ =
GOES IR imagery v.t. 09 UTC 19
AUgUSt 2007 AUgUSt 2007 AUgUSt 2007

Maximum occurs coincident with low level jet.



NARR reanalysis Elena

950-hPA MF, wind and 900-700 PV valid 850-hPA MF, wind and 900-700 PV valid
0600 UTC Sept. 4, 1985 0600 UTC Sept. 4, 1985



0600 UTC cross section, PV (color filled), winds, theta (red),
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0900 UTC cross section, PV (color filled), winds, theta
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Note similarities with Fritsch et al (1994) figure




From Fritsch et al. 1994

P (mb )

250

500 A

850

Conceptual model of MCYV that is moving slow enough
that air is overtaking the system due to a low-level jet
to the west or southwest. The dashed lines are potential
temperature, solid lines are potential vorticity. Note
that where there is rain cooled air the isentropes bulge
upward and where there is warming due to latent heat
the potential temperature lines bulge downward. The
positive PV anomaly is located where the potential
temperature gradient is greatest between the two.



0600 UTC, conditionally 0900 UTC saturated and
unstable neutral or unstable

980090404 300904/0900F000 34

Hodograph RESET | PARCEL | NEXT PAGE |

__INSET | INTERP | Overlay: OFF | SHOW TEXT |
Mean RH 70%, Mean LRH Mean RH 80%, LRH

81%, PW=2.04", Cape=914 92%, PW 2.16", Cape
120 J/kg



Hodograph shows a look of the top
of a coat-hanger

1985090409.narr 850904/0900F000 34.71;-92.44
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Now lets look at Erin
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070819/0600v030 NAM PWTR (IN) 850 MB WND (KT)

070819/0600v030 NAM 850 MB MFLUX, MFLUX CONVERGENCE

o A -

070819/0600v030 NAM 900-700 MB PV 850 MB WND (KT) MSLP

NAM 30 hr forecast
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\ Plymouth State Weather Center Y
100 f%q’soqndl‘qq — ‘\Ancﬂ’ysis for 12007 19 AUG 07

~|

S o ZANTAVA AN % : A A
s . ol Eprina /l"." / = \ ,\ % - \ / K ",J Il // }r‘ 2 /W_
070819/0600V000 GFS PWTR (IN) 850 MB WND (KT) . S0t § e fi;%';q:;*r’z
00 Q%Lzssgzm_‘zﬁs?‘zéj;h‘mﬁi&ésa 503 ;i
™50 51%2Y 08 203050 00 2007 406"

9

77 1200 UTC OKC sounding, note
| 12| the MAUL

7 AR L
27970 ) Wl—ie | What are keys to
I et~ | redevelopment of convection

}Z:::jﬁ?j“‘“ during MCVs and decaying
) 57—

0?0819/0%00‘]000 GFS 9(;0-700 HMB PV 850 MB WND (KT) MSLP tropical StOrmS?
0600 UTC f00 GFS

.




Air Tenperature [F]

Dire

Hind

Dewpoint Tenperature [F]

Hind Speed and Gusts [HPHI]

Watonga 24-Hour Mesonet Meteogram
for the period ending 1:00 pm GMT Aug 19, 2007
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Pressure plot.



250 winds v.t. 06 UTC 19 Aug 1250 winds v.t. 12 UTC 19 Aug




GFS f00 relative humidity, GFS f00 relative humidity, warm

vertical motion (cyan, layer depth (m),850 wind
dashed), and saturated EPV (magenta), 400 wind (cyan) valid
valid 0600 UTC 19 Aug 2007 0600 UTC 19 Aug 2007

Would these graphics be useful during an event or prior to an
event? They show instability, high RH, and give idea of the

shear profile.



Continuing efforts

Look into how MCS/MCV QPF might be
improved.

Continue to work on Tropical cyclone
QPF problem.

— Cyclone phase diagrams

Need better ensemble guidance training
on how best to use it.

Will continue to work on training manual



For HMT

» Continue working with Rich Grumm on
“fingerprinting” extreme events

— Need to get forecasters involved in the
research
» Look for opportunities to extend HMT
efforts into eastern U.S. and summer
season.



